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Abstract
Artifacts can result when reconstructing a dynamic

image sequence from inconsistent, as well as insufficient
and truncated, cone beam SPECT projection data acquired
by a slowly rotating gantry. The artifacts can lead to biases
in kinetic model parameters estimated from time-activity
curves generated by overlaying volumes of interest on the
images. However, the biases in time-activity curve estimates
and subsequent kinetic parameter estimates can be reduced
significantly by first modeling the spatial and temporal
distribution of the radiopharmaceutical throughout the
projected field of view, and then estimating the time-activity
curves directly from the projections. This approach is
potentially useful for clinical SPECT studies involving slowly
rotating gantries, particularly those using a single-detector
system or body contouring orbits with a multi-detector system.

We have implemented computationally efficient methods
for fully 4-D direct estimation of spatiotemporal distributions
from dynamic cone beam SPECT projection data. Temporal
splines were used to model the time-activity curves for the
blood pool and tissue volumes in a simulated cardiac data
acquisition. Least squares estimates of time-activity curves
were obtained quickly and accurately using a workstation.
From these curves, kinetic parameters were estimated
accurately for noiseless data and with some bias for noisy data.

I. I NTRODUCTION

Conventional analysis of dynamically acquired nuclear
medicine data involves fitting kinetic models to time-activity
curves generated by overlaying volumes of interest on a
temporal sequence of reconstructed images. Since dynamic
single photon emission computed tomography (SPECT) data
acquisition involves gantry motion and the distribution of
radiopharmaceutical changes during the acquisition (Figure 1),
projections at different angles come from different tracer
distributions. Images reconstructed from these inconsistent
projections can contain artifacts that lead to biases in the
estimated kinetic model parameters. If the data are acquired
using cone beam collimators wherein the gantry rotates so that
the focal point of the collimators always remains in a plane,
additional biases can arise from images reconstructed using
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insufficient, as well as truncated, projection samples.

To overcome these problems, we and others have been
investigating the estimation of time-activity curves and kinetic
model parameters directly from dynamic SPECT projection
data by modeling the spatial and temporal distribution of the
radiopharmaceutical throughout the projected field of view [1].
This approach is potentially useful for clinical studies,
particularly in those clinics which have only single-detector
systems and thus are not able to perform rapid tomographic
acquisitions. Even with a three-detector system, a patient study
that utilizes body contouring orbits can take 45–60 sec to
obtain one full tomographic acquisition. Thus, the estimation
of time-activity curves and kinetic model parameters directly
from projection data may also be useful for multi-detector
systems acquiring data with a slowly rotating gantry.

Building on research by Carson [2] and by Formiconi [3]
into direct time-activity curve estimation for regions of interest,
we have used simulated volumetric data to show that unbiased
kinetic parameter estimates for one-compartment models
can be obtained directly from dynamic SPECT projections,
given the blood input function and the proper segmentation of
volumes encompassing the projected field of view [4, 5]. We
have also applied these methods to a99mTc-teboroxime patient
study for which the blood input was estimated directly from the
projections and the volumes of the left ventricular myocardium,
blood pool, liver, and background tissue were determined
by automatically segmenting a dynamic image sequence
reconstructed from the inconsistent projection data [6].

Here we present a study of the biases that result from
modeling various orders of temporal continuity when
estimating time-activity curves directly from dynamic cone
beam SPECT projection data. Piecewise cubic, quadratic,

B(t)
km
21

km
12

Qm(t)

Figure 1: One-compartment kinetic model for99mTc-teboroxime in
the myocardium.B(t) is the blood input function,Qm(t) is the tracer
in tissue volumem, andkm

21 andkm
12 are the rate constants for uptake

and washout, respectively.
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linear, and constant B-splines [7] are used to model the
time-activity curves for the blood input, three myocardial
volumes of interest, liver, and background tissue in simulated
data. Attenuation and geometric point response are modeled,
but scatter is not. Segmented volumes encompassing the
projected field of view are modeled to contain spatially
uniform activity concentrations. Computationally efficient
methods are developed which extend Formiconi’s least squares
algorithm [3] so that fully four-dimensional (4-D) direct
spatiotemporal distribution estimation from projections can
be performed on a workstation with a modest amount of
memory. Using a Monte Carlo simulation, we study also the
effects of noisy projections on kinetic parameter estimates
for one-compartment models obtained from the spline
time-activity curves for the blood input function and the three
myocardial volumes of interest.

II. COMPUTATIONALLY EFFICIENT ESTIMATION

OF SPATIOTEMPORAL DISTRIBUTIONS

DIRECTLY FROM PROJECTIONS

Time varying activity concentrations within volumes of
interest encompassing the projected field of view can be
modeled by selecting a set of temporal basis functions capable
of representing typical time variations and having desired
smoothness properties. Similarly, the spatially nonuniform
activity concentration within a volume can be modeled by
selecting an appropriate set of spatial basis functions defined
within the volume. Given a set of temporal basis functions and
sets of spatial basis functions for the volumes, coefficients for
the resulting spatiotemporal basis functions can be estimated
directly from the projections as follows.

The projection of themth spatial basis function along rayi
at anglej is denoted byum

ij , and the integral of thenth temporal
basis function during the time interval associated with anglej
of rotationk is denoted byvn

jk. The projection equations can be
expressed as

pijk =
M∑

m=1

N∑
n=1

amnum
ij vn

jk, (1)

whereM is the number of spatial basis functions andN is
the number of temporal basis functions. The criterion which
is minimized by varying the linear coefficientsamn associated
with the time integrals of the projections of the spatiotemporal
basis functions is the weighted sum of squares function

χ2 =
I∑

i=1

J∑
j=1

K∑
k=1

(p∗ijk − pijk)2

Wijk
, (2)

where thep∗ijk are the measured projections, theWijk are
weighting factors,I is the number of projection rays per angle,
J is the number of angles per rotation, andK is the number of
rotations. Typically, the weighting factors are either unity for
an unweighted fit or the estimated variances of the projections
for a weighted fit.

Equations (1) and (2) can be rewritten in matrix form as

p = Fa, (3)

χ2 = (p∗ − Fa)TW(p∗ − Fa), (4)

respectively, wherep is anIJK element column vector whose
[i+(j−1)I +(k−1)IJ ]th element ispijk, F is anIJK×MN
matrix whose{[i + (j − 1)I + (k− 1)IJ ], [m + (n− 1)M ]}th

element isum
ij vn

jk, a is anMN element column vector whose
[m+(n−1)M ]th element isamn, p∗ is anIJK element column
vector whose[i + (j − 1)I + (k − 1)IJ ]th element isp∗ijk, and
W is anIJK × IJK diagonal matrix whose[i + (j − 1)I +
(k − 1)IJ ]th diagonal element is1/Wijk. The criterion,χ2, is
minimized by the spatiotemporal basis function coefficients

â = (FTWF)−1FTWp∗. (5)

Storing all IJKMN elements of F and calculating
the symmetric matrixFTWF using straightforward matrix
multiplication is computationally inefficient. For an
unweighted least squares reconstruction of the spatiotemporal
basis function coefficientŝa (i.e., for W an identity matrix),
calculating the symmetric matrixFTF using straightforward
matrix multiplication requires IJKMN(MN + 1)/2
multiply-and-add operations, givenF.

The burden of storing the matrixF can be reduced
significantly by storing instead the spatial basis projection
factors um

ij and the temporal basis integral factorsvn
jk and

calculating the elements ofF as needed. ForIJM � JKN ,
this reduces memory usage by a factor of aboutKN .

For an unweighted least squares reconstruction of the
spatiotemporal basis function coefficientsâ (i.e., for W an
identity matrix), the symmetricMN × MN matrix FTF
can be calculated more efficiently as follows. Denoting the
{[m + (n − 1)M ], [m′ + (n′ − 1)M ]}th element ofFTF by
φmnm′n′

, one has

φmnm′n′
=

I∑
i=1

J∑
j=1

K∑
k=1

um
ij vn

jkum′
ij vn′

jk. (6)

Rearranging the summations yields

φmnm′n′
=

J∑
j=1

[
I∑

i=1

um
ij um′

ij

][
K∑

k=1

vn
jkvn′

jk

]
=

J∑
j=1

µmm′
j νnn′

j ,

(7)

whereµmm′
j andνnn′

j denote the inner products
∑I

i=1 um
ij um′

ij

and
∑K

k=1 vn
jkvn′

jk, respectively.

The number ofµmm′
j factors isJM(M + 1)/2, the number

of νnn′
j factors isJN(N + 1)/2, and the number ofφmnm′n′

factors is MN(MN + 1)/2. It takes I multiply-and-add

operations to calculate eachµmm′
j factor andK multiply-and-

add operations to calculate eachνnn′
j factor. Given theµmm′

j

andνnn′
j factors, it takesJ multiply-and-adds to calculate each
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Figure 2: Transverse cross section
through MCAT emission phantom.
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Figure 3: Simulated time-activity
curves for volumes in Figure 2.
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Figure 4: Example of quadratic
B-spline temporal basis functions.

of the φmnm′n′
factors. Thus, theφmnm′n′

can be calculated
using justJ [IM(M + 1) + KN(N + 1) + MN(MN + 1)]/2
multiply-and-adds. ForI � N2 andK < M2, this reduces
the number of operations by a factor of aboutKN2.

Having addressed the major issues of storingF and
calculatingFTF, the next computational hurdle is calculating
FTp∗. This can be done in(I + 1)JKMN multiply-and-add
operations, given theum

ij and vn
jk factors. The system of

equationsFTFâ = FTp∗ can then be solved efficiently for the
spatiotemporal basis function coefficientsâ using the Cholesky
decomposition ofFTF.

III. C OMPUTERSIMULATIONS

The Mathematical Cardiac Torso (MCAT) phantom [8],
developed by the University of North Carolina Medical
Imaging Research Laboratory, was used in a simulation to
evaluate the ability to estimate spatiotemporal distributions
directly from dynamic cone beam SPECT projections
using unweighted least squares. Kinetic parameters for
one-compartment models (Figure 1) were estimated from the
resulting spatiotemporal distributions, as well. The MCAT
emission phantom (Figure 2) contained three myocardial
volumes of interest (normal myocardium, septal defect, and
lateral defect), blood pool, liver, and background tissue. The
myocardial defects were defined as the intersection of 3 cm
diameter spheres with the septal and lateral walls of the left
ventricle. Projections were attenuated using the corresponding
MCAT attenuation phantom. The simulated time-activity
curves for the six emission volumes are shown in Figure 3.
The time-activity curves for the three myocardial volumes of
interest and the liver were generated by using the blood pool
curve as the input to one-compartment models having kinetics
corresponding to those of teboroxime [9]. The background
tissue activity was proportional to the blood pool activity.

The simulated 15 minute SPECT data acquisition consisted
of 64 transverse× 32 axial rays per angle (I = 2048), J = 120
angles per rotation, and one rotation per minute (K = 15) of a
single-detector system. The projection bins were 7 mm× 7 mm
at the detector, and the detector was 30 cm from the center of
the field of view. The cone beam collimators had a focal length
of 70 cm, a hole diameter of 2 mm, a length of 4 cm, and were
offset 1 cm from the detector. Attenuation and geometric point

response were modeled using a ray-driven projector with line
length weighting [10]. Scatter was not modeled.

A. Spatiotemporal Distribution Estimates
The spatial basis functions were defined using the known

segmentation of the six emission volumes composing the
MCAT phantom (Figure 2). Each emission volume was
modeled to contain spatially uniform activity, which yielded
M = 6 spatial basis functions. The temporal basis functions
consisted ofN = 16 splines spanning 15 time segments having
geometrically increasing length (Figure 4). Piecewise cubic,
quadratic, linear, and constant B-splines were used with initial
time segment lengths ranging between 2.5–60 sec.

The computational benefits of factoring the matrixF into
the spatial basis projection factorsum

ij and the temporal basis
integral factorsvn

jk were evident in the simulation. Rather than
storing its more than 350 million elements, about 1.5 million
um

ij and vn
jk factors were stored instead. The number of

multiply-and-adds used to calculateFTF was reduced from
over 17 billion to less than 6 million. A set of time-activity
curves was estimated directly from the 3.7 million simulated
projection samples in about 2.3 min on a 194 MHz MIPS
R10000-based Silicon Graphics workstation. The calculations
of FTF andFTp∗ took about 2.2 sec and 2.2 min, respectively.

Table 1 lists the root mean square (RMS) differences
between the simulated time-activity curves and the spline
curves estimated directly from noiseless projections,
normalized by the RMS values of the simulated curves and
expressed as percentages. The temporal spline modeling errors
were largest for the septal and lateral defects, which had
relatively small spatial supports (Figure 2) and low activity
concentrations (Figure 3). Intermediate errors resulted for the
blood pool and background, which had larger spatial supports
but quickly decaying activity concentrations. The errors were
smallest for the normal myocardium and liver, which had larger
spatial supports and high activity concentrations throughout the
simulated data acquisition. The errors tended to increase as the
length of the initial time segment for the splines increased.

For the relatively rapid initial sampling provided by using
initial time segment lengths of 2.5, 5, or 10 sec, the errors
for all six volumes ranged between 0.02–3.8%, 0.02–1.7%,
0.09–6.2%, and 1.6–64% for the cubic, quadratic, linear, and
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cubic B-spline temporal basis quadratic B-spline temporal basis
initial time segment length (sec) initial time segment length (sec)

2.5 5 10 20 40 60 2.5 5 10 20 40 60
blood pool 0.08 0.2 0.6 2.6 9.2 18 0.2 0.2 0.5 2.2 9.4 18

normal myocardium 0.2 0.1 0.1 0.8 1.4 4.1 0.2 0.1 0.09 0.4 1.0 4.2
septal defect 0.4 0.6 0.9 5.3 38 40 0.8 0.5 0.9 5.1 39 42
lateral defect 0.3 0.7 3.8 14 57 50 0.7 0.6 1.7 11 60 53

liver 0.02 0.02 0.04 0.1 0.3 0.4 0.03 0.02 0.03 0.09 0.3 0.5
background 0.08 0.2 0.6 2.3 8.5 16 0.2 0.2 0.5 2.1 8.7 17

linear B-spline temporal basis constant B-spline temporal basis
initial time segment length (sec) initial time segment length (sec)

2.5 5 10 20 40 60 2.5 5 10 20 40 60
blood pool 1.0 0.9 1.1 3.0 11 20 10 9.5 11 13 19 26

normal myocardium 0.5 0.4 0.4 0.5 2.0 5.0 7.5 6.4 6.4 6.2 7.5 8.5
septal defect 3.1 2.7 3.2 11 53 34 64 64 51 56 59 110
lateral defect 6.2 5.7 4.4 6.8 51 60 40 49 39 73 65 110

liver 0.1 0.09 0.09 0.1 0.4 0.6 1.6 1.6 1.6 2.0 3.2 4.0
background 0.9 0.8 1.0 2.8 10 18 9.5 9.0 9.6 12 17 24

Table 1
Percent RMS differences between simulated time-activity curves and time-activity curves estimated directly from noiseless projections.

constant B-splines, respectively. For the uniform time sampling
provided by using an initial time segment length of 60 sec,
the corresponding errors ranged between 0.4–50%, 0.5–53%,
0.6–60%, and 4.0–110%.

B. Kinetic Parameter Estimates
Of interest is how the temporal spline modeling errors

bias the estimates of kinetic parameters obtained from the
directly estimated time-activity curves. To study this we used
the program RFIT [11, 12, 13] to fit one-compartment kinetic
models (Figure 1) to the directly estimated time-activity curves
for the three myocardial volumes of interest, using the directly
estimated blood pool curve as the input function.

Table 2 lists the kinetic parameter estimates obtained from
the spline models for time-activity curves estimated directly
from noiseless projections. The biases in the uptake parameters
km
21 and the washout parameterskm

12 were particularly small
when using quadratic B-splines and initial time segment lengths
of 2.5, 5, or 10 sec. For these three sets of basis functions, the
biases ranged between 0.0–1.0%.

To study the effects of noisy projections on kinetic
parameter estimates obtained from spline time-activity curves,
100 realizations of projections having Poisson noise were
generated. The simulated blood input function amplitude was
adjusted so that about 10 million events were detected using the
cone beam collimators. Quadratic B-splines and an initial time
segment length of 10 sec (Figure 4) were used to model the
time-activity curves. A two-tailedt test was used to assess the
biases in the sample means of the kinetic parameter estimates.

Results of the 100 noisy realizations are presented in
Table 3. The sample means of the uptake parameterk1

21 and
the washout parameterk1

12 for the normal myocardium did
not differ significantly from the simulated values (P > 0.4).
The sample standard deviations were about 1%. The sample
means of the uptake and washout parameters for the septal and

lateral defects were significantly different from the simulated
values (P < 0.05). The differences between the sample means
and the simulated values ranged between 5–16%. The sample
standard deviations ranged between 22–42%.

IV. D ISCUSSION

Computational issues associated with fully 4-D direct
estimation of spatiotemporal distributions from dynamic cone
beam SPECT projection data have been addressed, so that
least squares estimates of time-activity curves can be obtained
quickly and accurately using a workstation with a modest
amount of memory. Temporal B-splines were used to model
the time-activity curves for the blood pool and tissue volumes
in a simulated cardiac data acquisition. From these curves,
kinetic parameters for compartmental models were estimated
accurately for noiseless data and with some bias for noisy data.

The methodology presented here facilitates future research
into the joint estimation of the blood input function and
kinetic parameters for compartmental models directly from
projection data, as well as the parameterization of spatially
nonuniform activity concentrations within segmented volumes
encompassing the projected field of view.
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cubic B-spline temporal basis quadratic B-spline temporal basis
simulated initial time segment length (sec) initial time segment length (sec)

2.5 5 10 20 40 60 2.5 5 10 20 40 60
normal k1

21 0.700 0.700 0.700 0.701 0.700 0.683 0.7090.701 0.701 0.700 0.700 0.684 0.708
myocardium k1

12 0.150 0.150 0.150 0.150 0.150 0.149 0.1550.150 0.150 0.150 0.150 0.149 0.155
septal k2

21 0.300 0.301 0.301 0.300 0.286 0.181 0.3580.303 0.302 0.300 0.297 0.183 0.350
defect k2

12 0.300 0.301 0.301 0.300 0.288 0.207 0.3340.302 0.301 0.300 0.296 0.211 0.326
lateral k3

21 0.500 0.498 0.496 0.522 0.441 1.17 2.54 0.502 0.499 0.502 0.444 1.19 2.89
defect k3

12 0.600 0.599 0.598 0.616 0.565 0.942 1.750.602 0.598 0.603 0.561 0.957 1.87

linear B-spline temporal basis constant B-spline temporal basis
simulated initial time segment length (sec) initial time segment length (sec)

2.5 5 10 20 40 60 2.5 5 10 20 40 60
normal k1

21 0.700 0.703 0.700 0.702 0.698 0.687 0.7080.688 0.685 0.681 0.682 0.717 0.641
myocardium k1

12 0.150 0.150 0.150 0.150 0.150 0.149 0.1550.146 0.147 0.147 0.148 0.154 0.149
septal k2

21 0.300 0.295 0.292 0.308 0.301 0.170 0.3350.317 0.275 0.265 0.379 0.252 0.082
defect k2

12 0.300 0.297 0.296 0.305 0.302 0.204 0.3150.341 0.299 0.294 0.322 0.254 0.125
lateral k3

21 0.500 0.533 0.498 0.491 0.533 1.22 1.90 0.533 0.734 0.665 0.331 1.98 4.23
defect k3

12 0.600 0.602 0.578 0.585 0.626 0.990 1.320.635 0.833 0.660 0.553 1.36 2.09

Table 2
Kinetic parameters obtained from time-activity curves estimated directly from noiseless projections. Units forkm

21 andkm
12 are min−1.

noisy (n = 100)
simulated sample sample

mean std dev
normal k1

21 0.700 0.700 0.0064
myocardium k1

12 0.150 0.150 0.0016
septal k2

21 0.300 0.314* 0.072
defect k2

12 0.300 0.317* 0.066
lateral k3

21 0.500 0.578* 0.21
defect k3

12 0.600 0.653* 0.16

Table 3
Kinetic parameters obtained from time-activity curves estimated
directly from 100 realizations of noisy projections (10 million

detected events) using quadratic B-spline temporal basis functions and
an initial time segment length of 10 sec. Sample means significantly
different from the simulated values (i.e.,P < 0.05 for a two-tailed
t test) are labeled with asterisks. Units forkm

21 andkm
12 are min−1.
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